Step-by-Step: The Higg FEM Verification Trail Section 6: Air Emissions

March 3rd, 2020 Alaaddin Okur & Laura Brüggen

Meet our Speakers

Alaaddin Okur

Sustainability Manager, Leadership & Sustainability

Generalist & chemical specialist verifier

Has completed > 30 Higg FEM verifications

Laura Brüggen

Associate Sustainability Manager, Leadership & Sustainability

Verification Coordinator

2

Using GoToWebinar Control Panel

- During this webinar the audience will be muted, in order to ensure best audio quality
- Please feel free to send us questions during the presentation, via the Questions function
- In a follow up e-mail, we will provide a link to a recording of this webinar and a link to download the presentation

Click the drop down arrow to open "Questions"

File View Help	_ (׼₫	
▼ Audio	ed Charles	<u>ଅ</u>	3
Sou			
Computer at	udio		
Phone call			
Mikrofon (Realtek High	Definiti	~	
Lautsprecher (Realtek I	High Defi	~	
Talking: Teresa Heinze			
▼ Questions		ប	
			Type your questio
[Enter a question for staff]			
		Control 1	
		Send	

Click Send

Agenda

- 1. Verification Trail & Purpose
- 2. Section 6: Air Emissions
- 3. Questions and Discussion
- 4. Added value & FEM training offer
- 5. About Leadership & Sustainability

4

The Verification Trail and its Purpose

Verification Trail – Purpose

- Gaining better understanding of Higg Index and Higg FEM in particular and its **meaning** for your company
- Section-wise guidance through all processes
- Becoming acquainted with the requirements

Verification Process – Overview

Leadership & Sustainability

Guidance from SAC about on-site verification available here: <u>on-site verification</u>

General Advice

- Appoint a person who is responsible
- Read the <u>"How to Higg"</u> and the <u>Verification</u> <u>Preparation</u> guidance
- Respond **accurately** to the questions
- Documentation
- Targets and baselines
- Be aware of the **time** needed
- Ultimate goal is to **improve** every year

8

Verification Trail – Next Step

- Facility Information & Permits
- Environmental Management System
- Energy & GHG
- Water Use
- Wastewater
- Air Emissions

• Waste

6

Chemicals Management

Section 6: Air Emissions

Air Emissions – Applicability

Ensure correct Applicabilities

- Processes
 - Printing, Drying, Dyeing, etc.
- Supporting Facilities
 - Generators, boilers, industrial ovens, air conditioning etc.
- Other sources of ozone depleting substances
 - Chillers, refrigerators, etc.

Air Emissions – Applicability

* Sprayed chemicals or paints

Yes	~
Choose	
Yes	
No	

• Process that includes spray

o Such as

- Potassium permanganate (PP) spraying
 units
- Footwear assembly units which use spraying systems to color the soles
- Softening spraying units

Air Emissions – Applicability

Indoor / outdoor emissions

o Indoor

• Printing, adhesive process, spot cleaning, etc.

• Outdoor

• Fuel consumption, spinning, dyeing, etc.

• Level 1:

- 1. Operations emissions tracking
- 2. Production processes emissions tracking
- 3. Refrigerants
- 4. Control devices -Operations
- 5. Control devices– production processes

• Level 2:

6. Managing emissions beyond permit

• Level 3:

7. Modernizing equipment

Source: How to Higg Guide 3.1 Leadership & Sustainability

- Select all sources of air emissions (Q1)
 - Emission that are not regulated by a permit.
 - Emission that is not in compliance with its permit.
 - This question excludes emissions from production processes.

• Example Air Emissions Inventory Table

Factory ABC							
ID Number	Emission Source	Pollutants Emitted	Concentration	Determined by	Control Devices In Place	Applicable Regulations	Testing Required
	500 kW Diesel Power Emergency	Total Hydrocarbons (THC)	5 tons/year		NA	Technical Memorandum to issue Air Pollution	No testing required per regulation as generator
	Generator	NOx	60 tons/year	Measured		Abatement Notice to control Air Pollution from	run time is less than 200 hours annually.
PS - 1	S/N - 123456	PM2.5	4.2 tons/year	Calculated		Stationary Processes	
		со	13 tons/year				
		SOx	4 tons/year				
	125 kW Diesel Power Emergency	Total Hydrocarbons (THC)	3 kg/year		NA	Technical Memorandum to issue Air Pollution	No testing required per regulation as generator
	Generator	NOx	30 kg/year	Measured		Abatement Notice to control Air Pollution from	run time is less than 200 hours annually.
PS - 2	S/N - 987654	PM2.5	2.4 tons/year	Calculated		Stationary Processes	
		со	9 tons/year				
		SOx	2 tons/year				
	Wood Fired Steam Boiler	SO2	10 kg/year		NA	ANK-42-00 ANUKRET ON AIR POLLUTION AND NOISE	Per regulation, stack testing is required on
		NOx	300 kg/year	, Measured		DISTURBANCE CONTROL	annual basis and must meet emission discharge
PS - 3		PM2.5	240kg/year				limits.
		CO	24 kg/year				
		THC	15 kg/year				

Air Emissions Inventory

16

You can download an example inventory here.

Source: GSCP

- Select all sources of air emissions that result from production processes (Q2)
 - Indoor air pollution
 - Fugitive sources
 - Indoor air quality testing
 - VOCs content in sprayed chemicals

 Select all sources of air emissions that result from production processes (Q2)

Suggested upload:

- An inventory of emissions to air for all sources of emissions from production processes.
- Records (test records or estimations) detailing how the quantity of emissions reported were calculated.

Air Emissions – Exercise 1

- VOCs emission calculation from spot cleaners (Q2)
 Example:
 - **VOCs Content:** 1 mg/l (from VOC test report of spot cleaner)
 - Consumption: 100 liter in 2018
 - 100 liter x 1 mg/liter = 100 mg

Result: 100 mg VOC in 2018

Air Emissions – Exercise 2

- The facility has worked **300 days in 2019**.
- The facility's VOCs and PM results are in dyeing area:
 - o VOCs: 0.5 mg/m3
 - PM: 0.5 mg/m3
- Air flow: 30,000 m3/day

Please **calculate** the facility's PM and VOCs fugitive emission in 2019.

0.5(mg/m3/day)*300(day/year)*30,000(m3/day) = 4,500,000 mg/year = 4.5 kg / year each

- Refrigerants (Q3)
 - Air Condition
 - Chillers
 - Refrigerators
 - Hand-held fire extinguishers

21

- Control devices (Q4 and Q5)
 - **On-site** Air Emission
 - Dust collector
 - Bag filter
 - Wet Scrubbers
 - o Indoor Air Quality
 - Fume hood
 - Solvent recovery
 - Local exhaust ventilation

22

 Has your facility gone beyond permit requirements to achieve a higher level of air performance in Nitrogen Oxides (NOx), Sulfur Oxides (SOx), and Particulate Matter (PM)? (Q6)

Small (less than 50 MW)		Level 1 Foundational	Level 2 Strategic	Level 3 Aspirational
	PM	150	100	50
	SO2	2000	1000	400
	NOx	650	300	200

(Unit of measure: mg/Nm3)

Source: How to Higg Guide 3.1

How to achieve a higher level of air performance (Q6)

- Cleaner Energy Source
 - o Natural Gas
 - o Renewable Energy
- Air Pollution Control Systems
- Management such as:
 - Improving efficiency of the conversion of fuel to electricity
 - Removal of sulfur from coal before combustion

24

- Air Pollution Control Systems (Q6)
 - \circ SO2 control
 - Flue Gas Desulphurisation Dry or wet scrubbing

Source: powermag.com

- Air Pollution Control Systems (Q6)
 - \circ NOx emissions
 - Flue Gas Treatment -Catalytic filter

26

Source: redecam.com

- Air Pollution Control Systems (Q6)
 - Particulate emissions
 - Chimney top electrostatic precipitators (ESP)
 - Fabric filters (baghouses)
 - Mechanical/inertial collectors (cyclones/ multicyclones)
 - Wet particulate scrubbers

27

Air Emissions – Exercise 3

- The facility's emission results are:
 - PM : 75 mg/Nm3
 - SO2: 1,200 mg/Nm3
 - NOx: 250 mg/Nm3
- Which **level** did the facility achieve?

Level 1

Small (less than 50 MW)		Level 1 Foundational	Level 2 Strategic	Level 3 Aspiration al
	РМ	150	100	50
	SO2	2000	1000	400
	NOx	650	300	200

(Unit of measure: mg/Nm3)

Modernized equipment (Q7)

Question:

Do you have a process for implementing modernized equipment to reduce or eliminate air emissions and indoor air quality issues at your facility?

- Modernized equipment (Q7)
 - Replacing equipment
 - \circ Substituting
 - ODS with more environmental friendly refrigerants
 - Cleaner fuel
 - Modifying existing equipment
 - Optimizing abatement equipment
 - Reduce emissions

Questions & Discussion

Added Value - Implementing the Higg FEM

Countries, where we offer Higg FEM training & verification ³³

Algeria Australia Austria Bangladesh Belgium Benin Bosnia and Herzegovina Botswana Brazil Bulgaria

Albania

Cambodia Canada China D.R. of the Congo R. of the Congo Cote d'Ivoire Croatia Cyprus Czechia Denmark Djibouti Egypt El Salvador Eritrea Estonia Ethiopia

Finland France Gabon Georgia Germany Ghana Greece Guinea Hong Kong Hungary celand India Indonesia Ireland Israel Italy

Jordan Kenya Kosovo Kuwait Latvia Liechtenstein Lithuania Luxembourg **Languages:** English, German, French, Portuguese/English, Swedish, Turkish, Hindi, Bangla, Arabic and more

Please do not hesitate to <u>contact us</u>, even if your country is not listed here. We might be able to support you anyway or connect you to one of our partners.

Leadership & Sustainability

Burma

Burkina Faso

Countries, where we offer Higg FEM training & verification

Macedonia Madagascar Malaysia Mali Malta Mauritani Mauritius Moldova Morocco Mozambique Namibia Netherlands New Zealand Niger

N

Macau

Pakistan Poland Portugal Qatar Romania Rwanda San Marino Saudi Arabia Senegal Serbia Sierra Leone Singapore Slovakia Slovenia Solomon Islands -South Africa Spain

Swaziland Sweden Switzerland Tanzania Thailand Togo Tunisia a Turkey

Sudan

Uganda United Arab Emirates United Kingdom United States Vietnam Zimbabwe

Languages: English, German, French, Portuguese/English, Swedish, Turkish, Hindi, Bangla, Arabic and more

Please do not hesitate to <u>contact us</u>, even if your country is not listed here. We might be able to support you anyway or connect you to one of our partners.

Leadership & Sustainability Sri Lanka

Norway

Have you heard?

Recording & Presentation:

Sections 1 & 2: Site info & Permits and EMS

<u>Section 5:</u> Wastewater

<u>Section 3:</u> Energy & GHG

<u>Section 4:</u> Water Use

What to Expect On the Day of Your Higg FEM Verification

How to Improve Your SAC Higg FEM

Score – Updates to the How to Higg

FEM Training & Verification Offer

For training and verification – contact us

You can book a time slot for a call via our booking tool. Simply follow these steps:

- 1. Go to our <u>booking page</u>
- 2. Select "General Appointment" from the "Category" menu
- Go to the "Service" menu and select
 "Appointment 30 min"
- 4. Go to the "Employee" menu and select "Karin Ekberg"
- 5. Indicate your availability and click next
- 6. Choose your preferred date & time
- 7. Provide your contact details and any further notes you'd like to share

In case of difficulties, simply contact us Global: <u>Karin Ekberg</u> Turkey: <u>Alaaddin Okur</u> Bangladesh: <u>Hafizur Rahman</u>

Leadership & Sustainability

Higg Facility Environmental Module

EXPIRES 2020-05-02

Higg Facility Environmental Module

EXPIRES 2020-05-02

Higg Facility Environmental Module

EXPIRES 2020-05-03

Higg Facility Environmental Module

EXPIRES 2020-05-03

About Leadership & Sustainability

Leadership & Sustainability

Visit our Website: www.leadership-sustainability.com

E-Mail us: Karin.Ekberg@Leadership-Sustainability.com

Call us: Mobile: +49 (151) 461 70 184

Sign up to our newsletter or follow us on:

Be a Sustainability Leader – Choose us to support you!

